EECS 2077 Test #1, Summer 2013

Name:

#1/25 pts #2/20 pts	Allowed materials: 1 page of a 1-sided equations sheet, writing utensil, calculator. Remember – we use cgs units! Centimeter/gram/second					
#3/25 pts	kT = 0.026 eV (300 K)	$\epsilon_0 = 8.854 \times 10^{-14} \text{ F/c}$	cm			
#4/25 pts	$q=1.6x10^{-19}$ C	$n_i=1.5x10^{10}$ / cm ³				
Optional Feedback Rate the length of the Rate the difficulty of	<u>∡</u> nis test: short □ of this test: easy □	long 🗌 hard 🔄	ОК ОК			

1.) 30 pts. Two junctions are provided below. Assume ideal behavior (no breakdown, etc.)

For both of these junctions:

(a) apply negative voltage to the left side and draw with an arrow which way the bands will move;

(b) next, draw the source (starting location) and direction (with arrows) of all carriers that cause current flow:(c) assume you then apply even more negative voltage, and write below each 'increased current' or 'no change in current'.

Name:

2.) 20 pts. Lets play the drift versus diffusion game! Circle the correct answer for each:

a) Increases for a <u>forward biased</u> diode as doping increases. (4 pts.)

DRIFT DIFFUSION BOTH NEITHER

b) Decreases for a <u>reverse biased</u> diode as doping increases. (4 pts.)

DRIFT DIFFUSION BOTH NEITHER

c) For a semiconductor, will increase as mobility increases. (4 pts.)

DRIFT DIFFUSION BOTH NEITHER

d) Write out the proper units for EACH term in the current density (A/cm²) equation below. (4 pts) $q\mu_p p(x) E(x)$

e) Write out the proper units for EACH term in the current density (A/cm²) equation below. (4 pts)

 $qD_p \frac{dp(x)}{dx}$

Name:

3.) 20 pts. Some more basic/fundamental semiconductor questions:

a) Increasing doping will <u>change</u> what types of carriers in a semiconductor? (4 pts)								
MAJORITY	Ν	MINORITY	BOTH	NEITHER				
b) Recombination is at least partly what determines (effects) which of these semiconductor parameters? (4 pts)								
b) Recombination is at least party what determines (encets) which of these semiconductor parameters: (4 pts)								
LIFETIME	Ι	DIFFUSION LENGTH	BOTH	NEITH	ER			
c) To dope a Silicon semiconductor p-type, I need an element with how many valence electrons? (4 pts)								
ZERO	ONE	TWO	THREE	FOUR	FIVE	SIX		

d) As you increase the bandgap of a semiconductor (Si -> GaAs -> GaN, for example), what should happen typically to the intrinsic carrier concentrations if the semiconductors are at 300K? (4 pts)

INCREASES DECREASES STAYS THE SAME

e) Draw the band-diagram (just conduction and valance bands) for the following E-field profile. (8 pts)

Name:

4) [25 pts] An ideal Si p+n junction at 300K has the following parameters (you might not need them all).

<u>p-side:</u>	<u>n-side:</u>	General parameters
$Na=10^{17}/cm^{3}$	$Nd=10^{15}/cm^{3}$	$\varepsilon_{Si}=11.8$
$Dn=18 \text{ cm}^{2/\text{sec}}$	$Dp=25 \text{ cm}^{2/\text{sec}}$	
$Ln=10^{-3}$ cm	$Lp=10^{-2} cm$	

a) What is the <u>drift current</u> density (A/cm²) across the junction at an applied <u>reverse bias of -2V</u>? (10 pts)

b) What is the <u>diffusion current</u> density (A/cm²) across the junction at a <u>forward bias of 0.5? V</u>? (10 pts)

c) If you wanted to decrease the reverse breakdown voltage (easier to breakdown) for this diode (now you may assume non-ideal behavior), of all the parameters listed above, which one (and only one) would you change and how? (5 pts)

EECS 2077 Test #1, Summer 2013

Extra Space

Name: